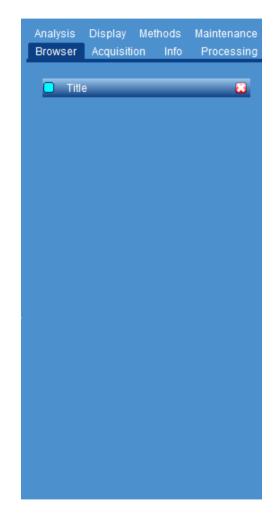


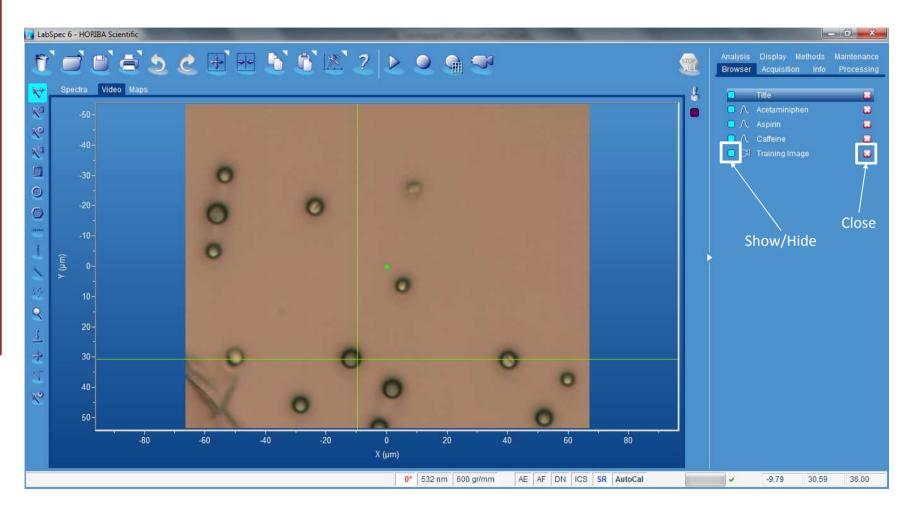
LabSpec 6.2 Tutorials

HORIBA

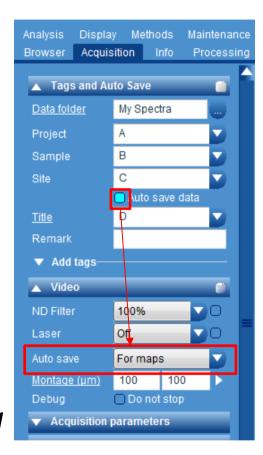
- Data are displayed in the center with multiple tabs (data tabs).
 - Spectra single point spectra
 - Video sample images
 - Maps spectrum arrays + sample image
 - Additional tabs are opened/closed as necessary while data processing and analysis

- Icon bar
 - Icons for the most common operations
 - Right triangle on the right top corner indicates that additional options are available when right click the icon
- Graphical manipulation toolbar
 - Icons for the most common operations for the selected data type


- Status bar at the bottom
 - Detector temperature
 - Selected laser and grating
 - On/Off AutoExposure (AE), AutoFocus (AF), DeNoiser (DN), Intensity Correction System (ICS), Instant Processing (IP) and Spectral Range (SR)
 - Icon for AutoCal
 - Progress bar
 - Values of the selected position
 - Spectrum: Cursor positions, distance between positions, intensity

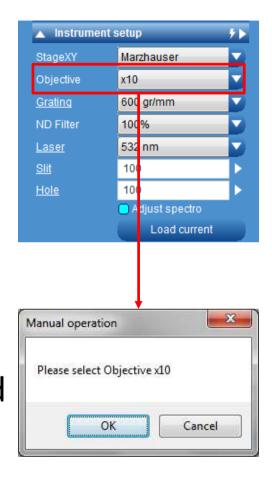

- All instrument and experiment controls are compiled on the right (Control Panel) with multiple tabs (Section).
 - Browser: View and manage data
 - Acquisition: Data acquisition
 - Info: Data information
 - Processing: Data processing
 - Analysis: Data analysis
 - Display: Setup display options
 - Methods: Create, manage and execute macros
 - Maintenance: Perform spectral axis calibration automatically

Browser Section



Acquisition Section

- Tags and Auto Save
 - Customize the data storage structure for Auto Save
- Video
 - Montage: Record a large (larger than the field of view) image by stitching multiple images together
 - AutoSave: When Auto Save Data is selected in Tag and Auto Save module, an image of the sample is recorded and saved in the same name as the spectrum or map data file.
- Underlined text indicates that additional options are available when left click the text



Record an Image

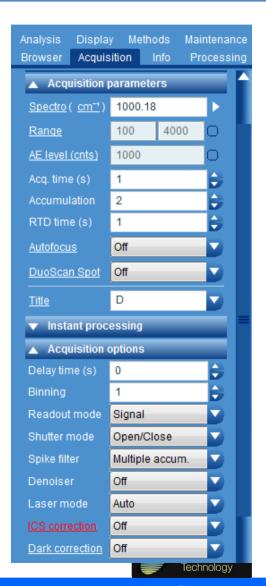
- Select a sample (e.g. powder)
- Place the sample (e.g. a speck of powder) on a microscope slide
- Place the microscope slide on the stage
- Select a low magnification objective lens (e.g. 10×). Select the matching objective lens from the software, and then click OK when the message for the manual operation appears.

Record an Image

Start video

- Find the desired location and focus
- Select a high magnification objective lens (e.g. $50\times$). Select the matching objective lens from the software, and then click OK when the message for the manual operation appears.
- Find the desired location and focus
- Stop video

Save the image

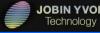

Acquisition Section

Acquisition parameters

- Range: Record a spectrum over an arbitrary spectral range. When turned on, status bar marks its use with SR.
- Auto Exposure (AE) and Autofocus (AF) are controlled in this module. When turned on, status bar marks their use with AE and AF.
- DuoScan is controlled in this module.

Acquisition options

- Intensity Correction System (ICS) is controlled in this module. When turned on, status bar marks its use with ICS
- Denoiser: Apply an advanced noise filter to the acquiring spectrum



Acquisition Section

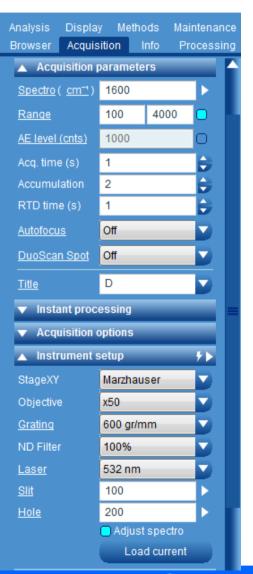
- Instrument setup
 - Adjust spectro: Maintain the spectral position when changing lasers or gratings
- Map
 - Setup to record a spectrum array (e.g. XY-map, Z-profile or t-pofile)
 - Control SWIFT in this module
- XYZ stage
 - Reset the position counter at will
 - XYZ positions are with respect to the last counter reset position

HORIBA

Explore the future

Record a Spectrum

- Select a sample (e.g. polymer)
- Place the sample (e.g. a piece of polymer) on a microscope slide
- Place the microscope slide on the stage
- Select a low magnification objective lens (e.g. 10×).
 Select the matching objective lens from the software, and then click OK when the message for the manual operation appears.
- Start video
- Find the desired location and focus



Record a Spectrum

- Select a high magnification objective lens (e.g. 50×). Select the matching objective lens from the software, and then click OK when the message for the manual operation appears.
- Find the desired location and focus
- Stop video
- Save the image
- Select Grating (e.g. 600 gr/mm)
- Select Laser (e.g. 532 nm)
- Set Slit (e.g. 100 μm)
- Set Hole (e.g. 200 μm)
- Set ND filter (e.g. 100 %)

Record a Spectrum

- Set Spectro (e.g. 1600)
- Set RTD time (s) (e.g. 1)
- Start Real Time Display (RTD)

Stop RTD

- Review the spectral features. Determine, select and set the Range to record the spectrum (e.g. 100 - 4000)
- Set Acq time (s) (e.g. 1)
- Set Accumulation (e.g. 2)
- Unselect AE level; turn off Autofocus; turn off DuoScan Spot
- Start Spectrum Acquisition

Save the spectrum

Save and Export

Left click Save as Data icon

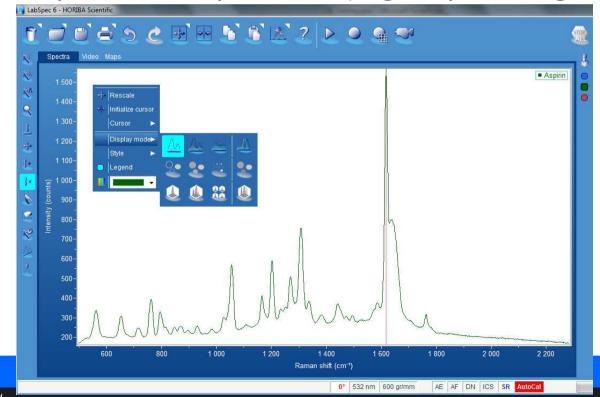
- Save As window opens.
- Save the data in LS6, LS5, LS4, GRAMS, or Text format
- You can save the entire configuration
- Right click Save as Data Icon
 - Activates the pop-up menu.

- Batch export to LS4, LS5, LS6, GRAMS or Text format
- Save to group file: Save all data in the tab to a single file
 When opened, individual identity is maintained
- Save all files: Save all data in the tab to individual files

Open and Import

Left click Open file icon

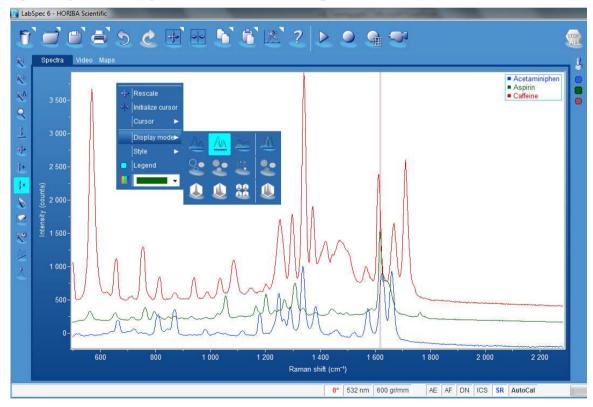
- Open window opens
- Open a data file
 - Single spectrum in LS4, LS5, LS6, GRAMS or Text format
 - Multi spectrum (or a spectrum array) in LS4, LS5 or LS6 format
 - Image in LS4, LS5, LS6, TIFF, BitMap or JPeg format
 - Arbitrary data in Text format
- Right click Open file icon
 - Open recently opened files



Explore the future

Visualize Spectra

- Open three spectra (e.g. Acetaminophen, Aspirin and Caffeine)
- Right click within Spectra tab, and then bring mouse point to Display mode. Select Single mode to display the currently selected spectrum (e.g. Aspirin in green).

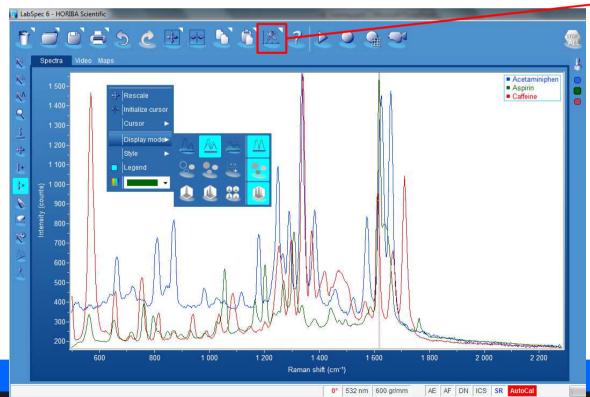


Visualize Spectra

 Right click within the Spectra tab, and then bringt mouse point to Display mode. Select Overlay mode to display all spectra using the same intensity scale

HORIBA

Explore the future


© 2013 HORIBA, Ltd. All rights reserve

Visualize Spectra

 Right click within the Spectra tab, and then bring mouse point to Display mode. Select Normalize to display all spectra using individual intensity scales.

These operations are also accessible by clicking Display

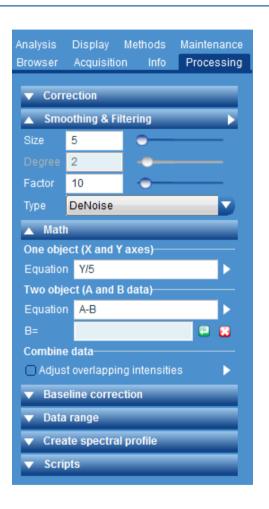
Functions icon on the icon bar

HORIBA

Processing Section

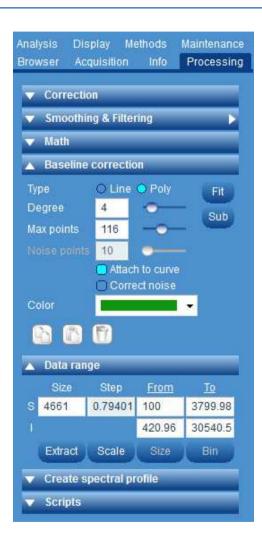
Correction

- Threshold: Applicable to a spectrum array only. Reset low intensity spectra to all zeros.
- Correct: Subtract a spectrum (e.g. a solvent spectrum) from a series of spectra. May apply a scale.
- Normalize: Normalize to unit intensity sum, unit spectrum area, maximum intensity, unit vector, and normal variate.



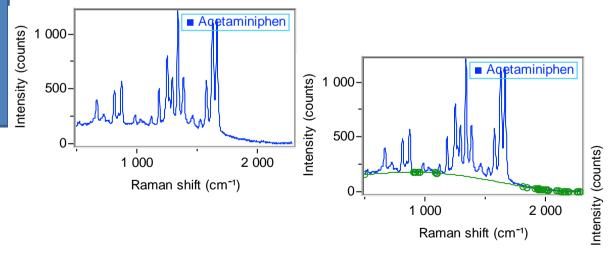
Processing Section

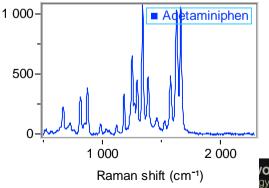
- Smoothing and filtering
 - Denoizer is the identical operation as in Acquisiton tab
 - 1st and 2nd derviative
- Math
 - Unary or binary operations
 - Within a spectrum or between spectra



Processing Section

- Baseline correction
 - Polynomial curve or line segments
 - Up to 256 anchor points
 - Copy the baseline of one spectrum, and paste to another spectrum for duplication
- Data range
 - Truncate, rescale or resize data ranges




Process a Spectrum

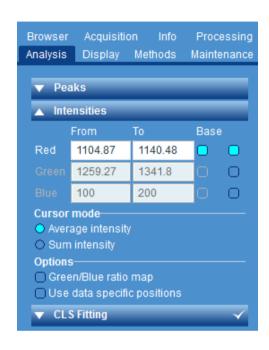
Baseline correction

- Select a spectrum (e.g. Acetaminophen)
- Click Fit
- Adjust Degree and Max points as necessary
- Click Sub

Analysis Section

Peaks

- Peak fitting using standard or custom functions
 - Standard functions: Gaussian, Lorentzian, Gaussian+Lorentzian, Asymmetric Gaussian, Asymmetric Lorentzian or Asymmetric Gaussian+Asymmetric Lorentzian
 - Custom functions are operator defined.
- May fit the baseline while peak fitting
- Results include peak positions, peak heights, bandwidths (full widths at half maximum) and peak areas



Analysis Section

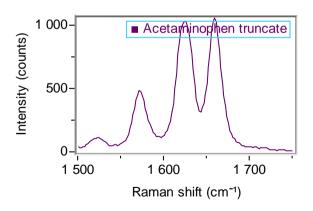
Intensities

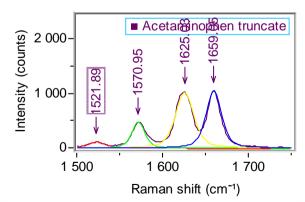
- Applicable to a spectrum array only
- Map the designated peak intensities with or without baseline correction
- May map a ratio of two peak intensities
- Use data specific positions
 - When checked, peak designations are applied to, and saved with the target data.
 - When unchecked, peak designates are applied to all data including currently acquiring data.

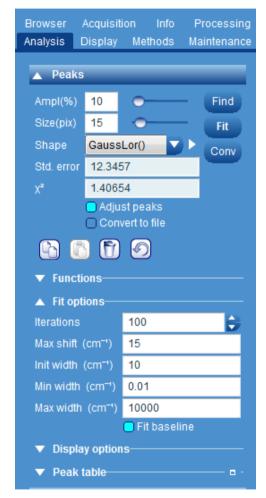
Analysis Section

CLS fitting

- Applicable to a spectrum array or a spectrum
- Reuquire reference spectra. The score indicates the similarity of the target spectrum with respect to the reference spectrum.
- Use data specific models
 - When checked, reference spectra are applied to, and saved with the target data.
 - When unchecked, reference spectra are applied to all data including currently acquiring data.






Analyze a Spectrum

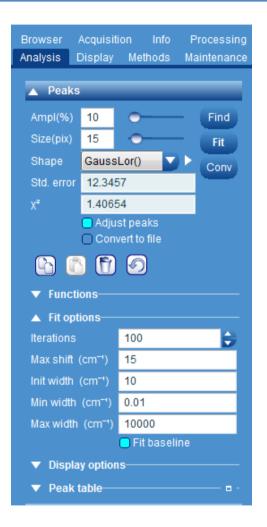
Peak fitting

- Select a spectrum (e.g. Acetaminophen truncate)
- Select Shape (e.g. GaussLor() for Gaussian+Lorentzian function)
- Click Find

Analyze a Spectrum

- Peak fitting (cont'd)
 - Click Fit options to expand

• Iterations: 100

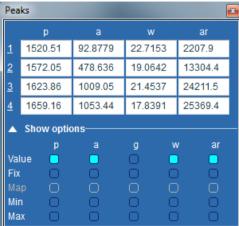

Max shift: 15

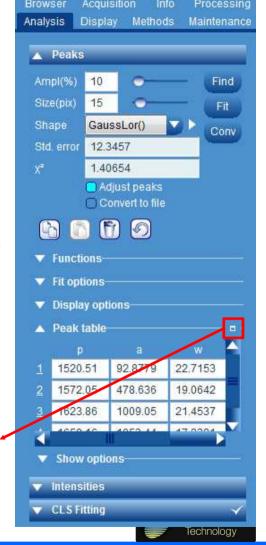
• Init width: 10

• Min width: 0.01

Max width: 1000

– Click Fit. Repeat if necessary until there is no change in Std error and χ^2 .

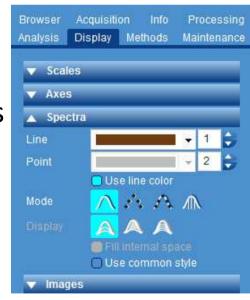


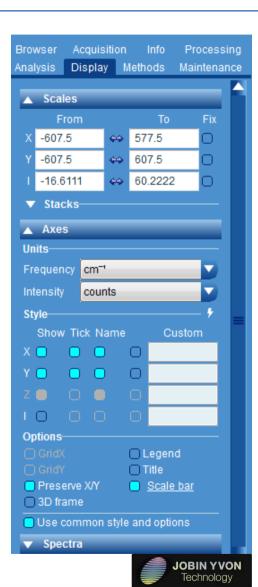

Analyze a Spectrum

- Peak fitting (cont'd)
 - Click Peak table to expand, and then click the button on the right top corner to popup the peak table
 - Click Show options to expand. In Value row of Show options, check p (peak position), a (peak height), w (FWHM) and ar (peak area)

Click Conv to convert the data to the fitted

result if desired.




Automotive Test Systems | Process & Environmental | Iviedical | Semiconducto

HORIBA

Display Section

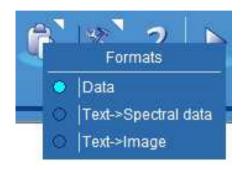
- Scales
 - May fix or reverse the axis scales
- Axes
 - Select axis units for spectrum
 - On/Off axis
- Spectra
 - Adjust line thickness



Copy

Right click Copy icon

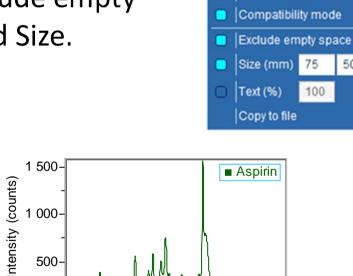
- Setup the copy options
- Data: Copy the current data set as the same data type. Paste to the same tab/window
- Picture: Copy the current tab
 (Spectra, Video or Map) display as a picture. Paste to another software (e.g. PowerPoint)
- Text: Copy the current data set to the text format. Paste to another tab (e.g. Spetra Tab) or another software (e.g. Excel)



Paste

Right click Paste icon

- Setup the paste options
- Data: Paste the data in the memory to the same tab/window as the original data
- Text → Spectral data: Paste the text in the memory as a spectra or a spectrum array.
- Text → Image: Paste the text in the memory as an image.



Copy and Paste a Spectrum as a Picture

- Select a spectrum (e.g. Aspirin)
- Right click Copy icon
 - Select Picture
 - Check White background, Exclude empty space, Compatibility mode and Size.
 Uncheck the rest
 - Input 75 and 50 for Size
- Left click Copy icon
- Open PowerPoint and paste

Raman shift (cm⁻¹)

1 000

A 1835

Cursors

Gray scale

White background

Screen background

Formats

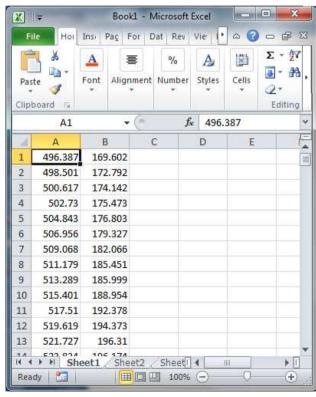
Text with axis

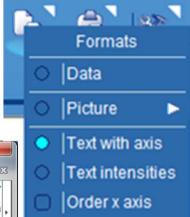
Order x axis

Text intensities

Data

Picture





2 000

Copy and Paste a Spectrum as Text

- Select a spectrum (e.g. Aspirin)
- Right click Copy icon
 - Select Text with axis
- Left click Copy icon
- Open Excel and paste

Spectrum Array

- Spectrum array is a collection of spectra, typically acquired over a range of a variable (or variables) at a regular interval.
- Types of a spectrum array include
 - XY-map: a collection of spectra recorded over an area
 - Z-profile: a collection of spectra recorded over a range of height
 - t-profile: a collection of spectra recorded over a length of time
- Spectrum array is typically setup in Map module of Acquisition section

- Select a sample (e.g. tablet)
- Place the sample (e.g. a tablet) on a microscope slide
- Place the microscope slide on the stage
- Select a low magnification objective lens (e.g. 10×).
 Select the matching objective lens from the software, and then click OK when the message for the manual operation appears.
- Start video
- Find the desired location and focus

- Select a high magnification objective lens (e.g. $50\times$). Select the matching objective lens from the software, and then click OK when the message for the manual operation appears.
- Find the desired location and focus
- Stop video

Save the image

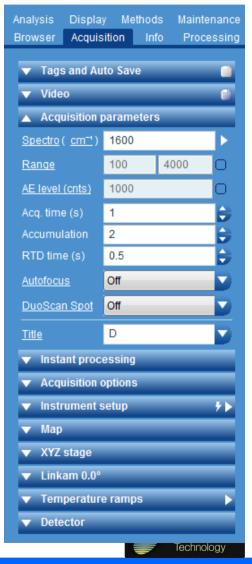
- Select the map shape (e.g. rectangle) from the graphical manipulation toolbar.
- The cursor of the selected shape appears. Drag, strech and/or drop the cursor to mark the location and area of the map.

 Expand Map module, and set the number of measurement points (e.g. Size = 11). Measurement points are marked in the rectangle shaped cursor

- Select Grating (e.g. 600 gr/mm)
- Select Laser (e.g. 532 nm)
- Set Slit (e.g. 100 μm)
- Set Hole (e.g. 200 μm)
- Set ND filter (e.g. 100 %)

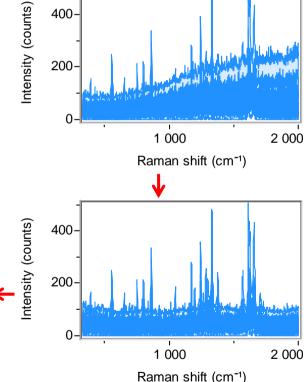
HORIBA

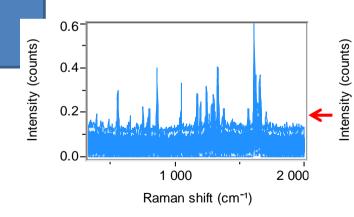
- Set Spectro (e.g. 1600)
- Set RTD time (s) (e.g. 0.5)
- Start and stop RTD

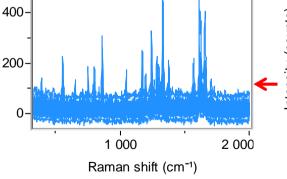


- Review the spectral features. Adjust Spectro if necessaryy
- Set Acq time (s) (e.g. 1)
- Set Accumulation (e.g. 2)
- Unselect range; unselect AE level; turn off Autofocus; turn off DuoScan Spot
- Start map acquisition

Save the map

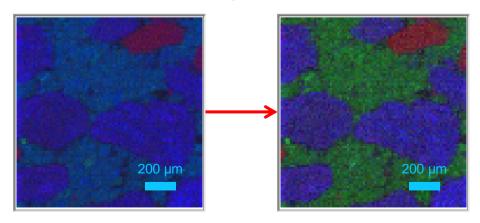





Process the XY-Map

- Select a spectrum array file (e.g. Training Map)
- Select the spectrum array window
- **Apply Baseline correction**
- Apply Zero
- Apply Normalize to unit area

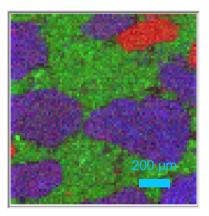
400



Process the XY-Map

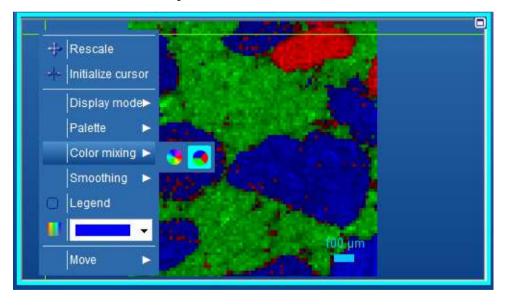
Intensities

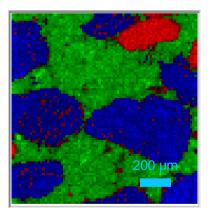
- Select the spectrum array window
- Select red map cursor. Double red lines become solid. Bracket the band ~ 555 cm⁻¹
- Select green map cursor. Double green lines become solid. Bracket the band ~ 857 cm⁻¹.
- Select blue map cursor. Double blue lines become slid. Bracket the band ~ 1608 cm⁻¹
- Check Base for Red, Green and Blue



Visualize the XY-Map

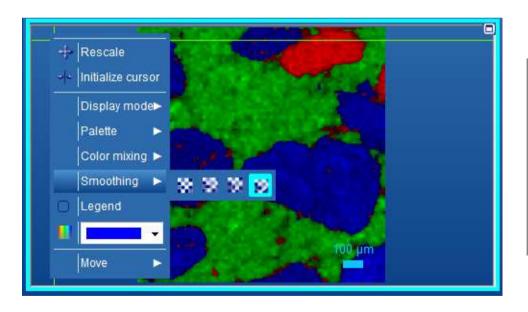
 Right click within Map window, and then bring mouse point to Display mode. Select Normalize to display all intensity maps using individual intensity scales.

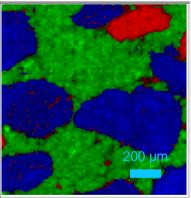




Visualize the XY-Map

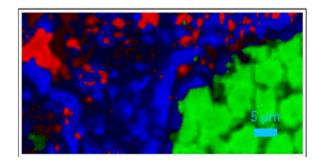
 Right click within Map window, and then bring mouse point to Color mixinge. Select Unmixed to display each pixel in the color of the highest intensity.





Visualize the XY-Map

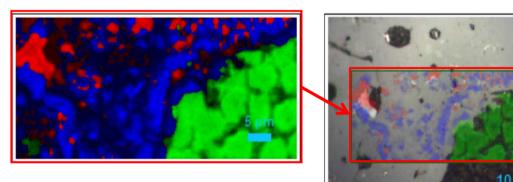
 Right click within Map window, and then bring mouse point to Smoothing. Select Smoothed to interploated display.



Display Section

Images

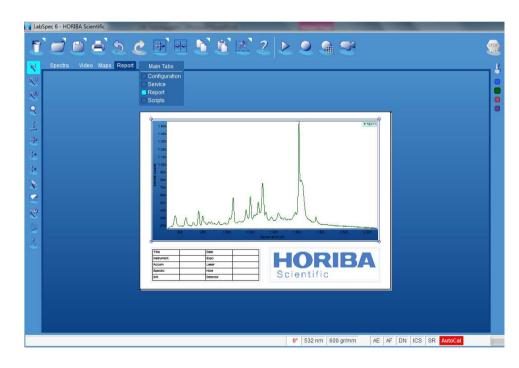
- Adjust brightness and contrast of RGB format
- Adjust hue, lightness and saturation of HLS format
- For an unmixed image, calculate the area ratio of each color in RGB format



Display Section

- Map display options
 - Overlay the microscopy image (e.g. brightfield image) with the chemical image (e.g. intensity map or score map)

Browser Acquisition Info Processing			
Analysis Display Methods Maintenance			
▼ Scales			
▼ Axes			
▼ Spectra			
▼ Images			
▼ 3D			
▲ Map display options			
Show video of map area only			
☐ Lock windows Reset			
▲ Overlay———			
Overlay data on video			
■ Intensities			
☐ Scores ————			
○ Peak Fit ———			
Show additional info			
□ Positions □ Index			
☐ Limits ☐ Title			
▼ Color & Text			
▼ LabSpec options			



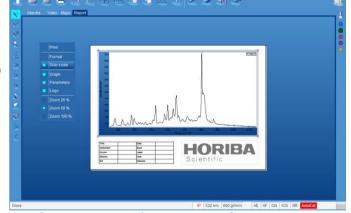
Report Tab

- Right click on Data tabs, and select Report
- Display data, parameters and log in one page for printing

Report Tab

- Select a spectrum (e.g. Aspirin)
- Right click on Data tabs, and select Report to open Report tab.

Right click within Report tab to activate the popup

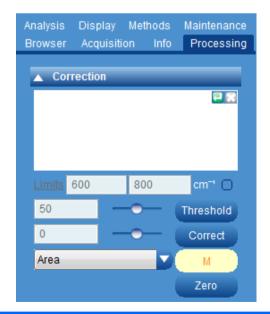

menu

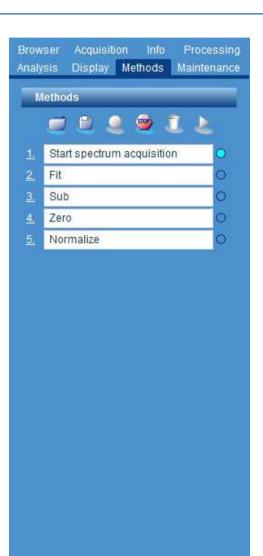
• Select Zoom 50%

Select Gray scale

Select Print

 Right click on ata tabs, and unselect Report to close Report tab





Method Section

- Records and perform the operator selected operations in sequence.
- Method compartible operations turn M when the mouse point hovers. Click to add to Method
- Acquisition, Processing and Analysis operations are Method compatible.

Show Run button in toolbar

- Tale a tablet, and shave the top surface flat if necessary
- Place the sample on the stage using a microscope slide
- Select a low magnification objective lens (e.g. 10×).
 Select the matching objective lens from the software.
- Start video

- Find the desired location and focus
- Select a high magnification objective lens (e.g. $50\times$). Select the matching objective lens from the software.
- Find the desired location and focus
- Stop video

- Select Acquisition section
- Expand Tab and Auto Save
 - Select Auto Save Data
 - Data folder: Select a location on the hard drive
 - Project, Sample, Site and Title: Input appropriate texts
 - Expand Add Tags, and select Operator.
 Input your name

Analysis Display Browser Acquis	/ Methods Mainte ition Info Proc	nance essing	
▲ Tags and Auto Save			
<u>Data folder</u>	C:\Users\elee.HOR		
Project	Training	\Box	
Sample	Test		
Site	Position		
	Auto save data		
<u>Title</u>	Try		
Remark	This is for training		
▲ Add tags——			
Operator	HORIBA		
Power		0	
Туре		0	
Formula		0	
Solvent		0	
☐ Edit names			

Expand Instrument setup

Objective: 50×

Grating: 600 gr/mm

- Laser: 532 nm

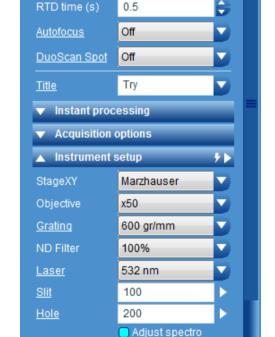
- Slit: 100

- Hole: 200

ND filter: 100 %

Expand Acquisition parameters

- Spectro: 1600


Range: Select, and input 100 and 4000

AE level: Unselect

- Acq. time: 1

Accumulation: 2

- Autofocus: off

Browser Acquisition

Spectro (cm-1)

AE level (cnts)
Aca. time (s)

Accumulation

Range

▲ Acquisition parameters

1600.14

4000

100

1000

- Select Methods section
 - Select Record Method
 - From Icon Bar, click Start Spectrum Acquisition
 - From Processing section, click Fit and then Sub in Baseline correction
 - From Processing section, click Zero and then Normalize in Correction
 - Select Stop method recording

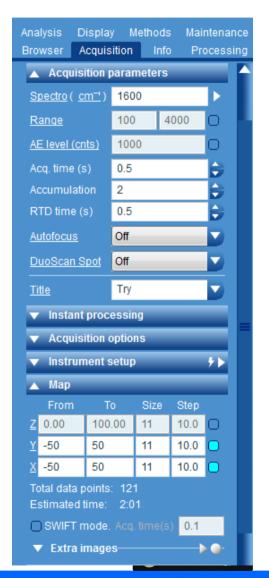
Expand Acquisition parameters

- Spectro: 1600

Range: Unselect

AE level: Unselect

- Acq. time: 0.5


Accumulation: 2

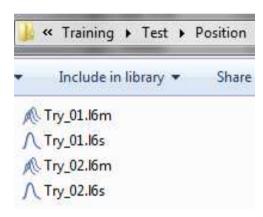
Autofocus: off

– DuoScan Spot: off

Expand Map

- Select Y; From = -50; To = 50; Size = 11; Step = 10 (automatically set)
- Select X; From = -50; To = 50; Size = 11; Step = 10 (automatically set)

- Select Methods section
 - Select Record Method
 - From Icon Bar, click Start Map Acquisition
 - From Processing section, click Fit and then Sub in Baseline correction
 - From Processing section, click Zero and then Normalize in Correction
 - Select Stop method recording



- Select Methods section
 - Select Run method
 - After completion of the first run, select
 Run method one more time

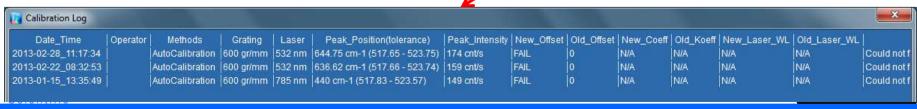
Results

- Select Spectra tab, and confirm two spectra (Try_01 and Try_02) are recorded
- Select Map tab, and confirm two maps (Try_01 and Try_02) are recorded
- Open Data Folder location. Confirm subdirectories are created, and data files saved

Maintenance Section

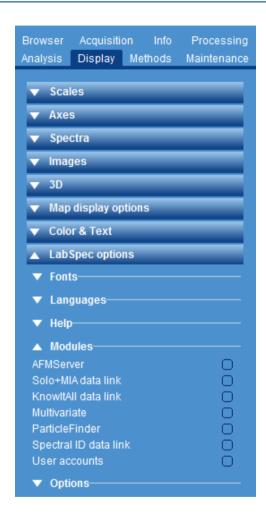
600 gr/mm

532 nm


 Use Si standard provided by HORIBA with the system.

DN ICS SR AutoCal

- Click AutoCal button in the status bar or Run button in AutoCalibration module
- Setup AutoCalibration: Available only to administrator level operators.
- Current AutoCalibration: Current laser + current grating
- Full AutoCalibration: All lasers + all gratings
- Show log: Display AutoCalibration log



Exit

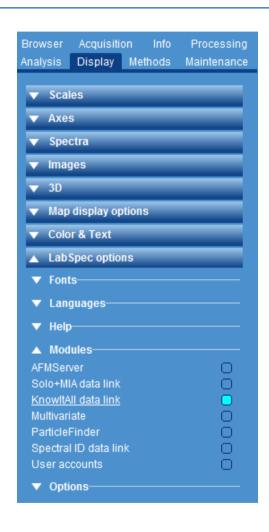
Display Section

- LabSpec options
 - Available only to administrator level operators
 - Activate/deactivate advanced/optional functionality

User Accounts

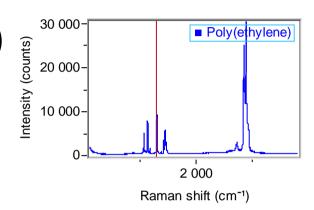
- Administrator only
 - Manage user accounts
 - Full access to Processing and Analysis sections
 - Full acess to Display section including custome module management
 - Setup AutoCalibration
 - Acess to Service and Configuration functions
- Expert and higher
 - Full acess to Acquistion
 - Access to advanced functions in Processing and Analysis sections
 - Access to Display section except for custome module management
 - VBS scripting for advanced customization

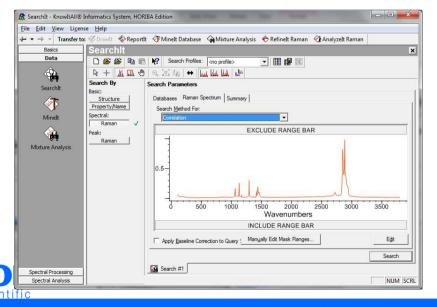
User Accounts

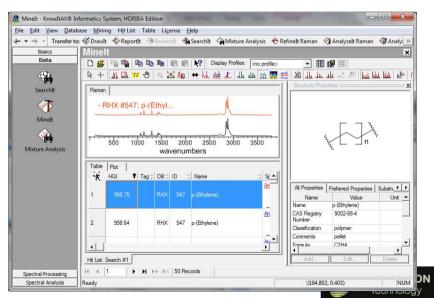

- Operator (full) and higher
 - Acquire spectrum arrays
 - Access to Processing and Analysis functions for spectrum arrays
 - Access to Image and Map display parameters in Display section
- Operator (basic) and higher
 - Acquire spectra and microscope images
 - Access to Processing and Analysis functions for spectra
 - Access to Spectrum disply parameters in Display section
 - Perform AutoCalibration, and view AutoCalibration log file

KnowltAll

- An optional module for LS 6
- Available in LS 6.1 and higher
- Library search engine by BioRad
- After installation of KnowItAll (KIA), direct link from LS 6 to KIA is activated from LabSpec options module in Display section. The procedure requires a separate license.



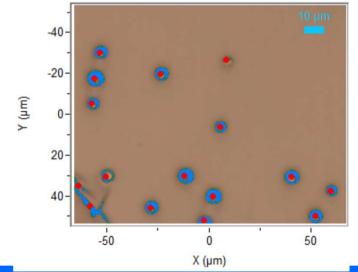


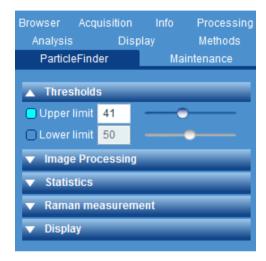


Search Library

- Select a spectrum (e.g. polyethylene)
- Click the link to KIA
 - NK to KIA **LEE** with the spectrum
- KIA opens with the spectrum imported, and ready to search.
- Click Search. The first hit/best fit is polyethylene

- An optional module for LS 6
- Available in LS 6.2 and higher
- Analyze the sample image to identify, and analyze particles. Morphological and Raman analyses.
- After installation, Particle Finder section is activated from LabSpec options module in Display section. The procedure requires a separate license.





- Open an image (e.g. Training Image)
- Select ParticleFinder section
- Expand threshold
 - Select Upper limit. Threshold is applied interactively

Adjust the threshold to your satisfaction

(e.g. 41)

- Expand Image Processing
 - Select Apply morphological filters.
 - Select a filter (e.g. Open) or filters from Function
 - Select Remove edge particles and Fill holes

Select Min. particle area, and input the

-20-

20-

threshold (e.g. 10)

X (µm)

Analysis

Function

Fill holes

Open

ParticleFinder

Thresholds

Image Processing

Apply morphological filters

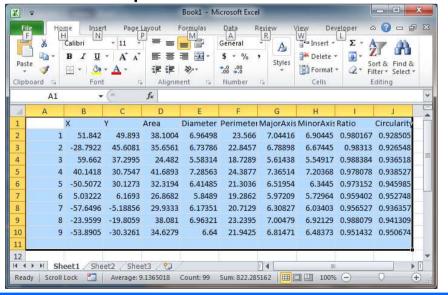
Remove edge particles

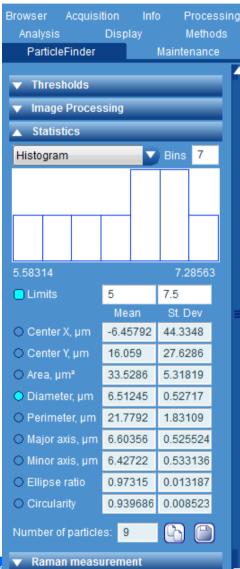
HORIBA

Automotive Test Systems | Prod

Explore the future

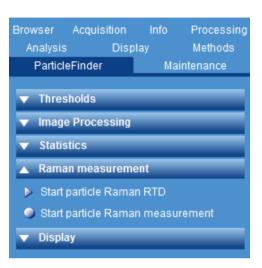
HORIBA

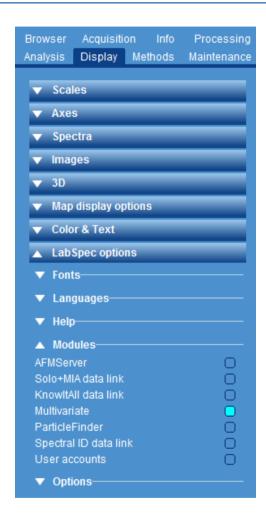

JOBIN YVON

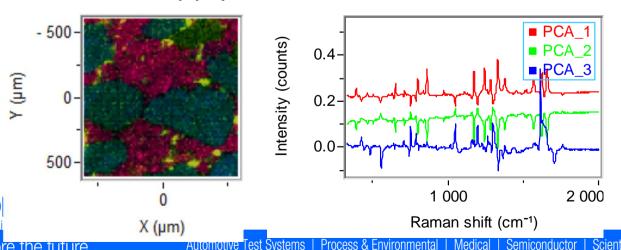

Processing

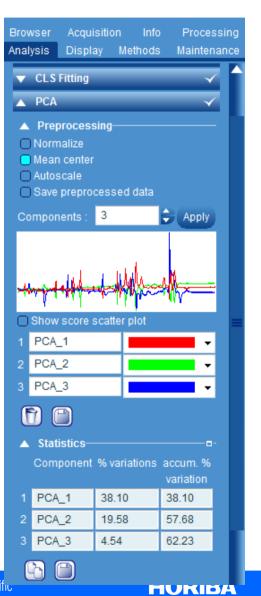
Methods

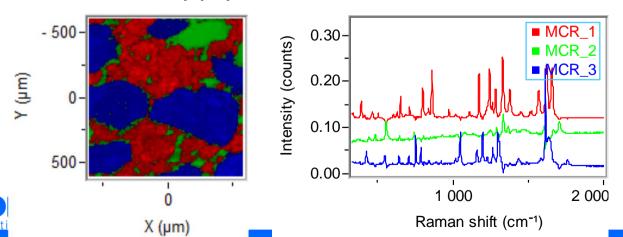
Maintenance

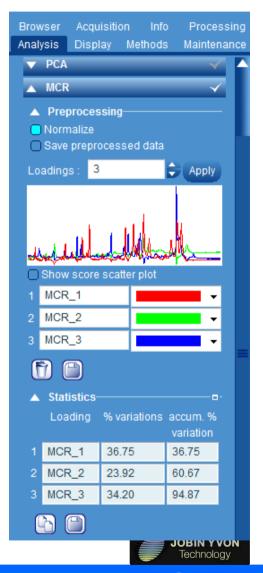

- Expand statistics
 - Further select particles based on the morphological characteristics (e.g. 5 μm
 Value of the control of the characteristics (e.g. 5 μm)
 - Select Copy button to copy full statistics
 - Open Excel and paste


- Expand Raman measurement
 - Click Start particle Raman measurement
 - Stage moves to center each particle in turn, and record a spectrum from the red dotted position
 - The result is a map as a collection of all particle spectra

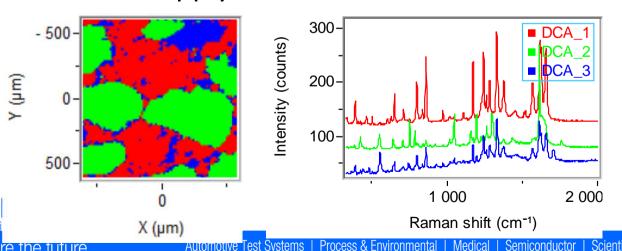

- An optional analysis methods for LS 6
- Selected methods are available in LS 6.2 with more in development
- Multivariate analysis (MVA) engine by Eigenvector Research
- After installation, MVA methods are activated from LabSpec options module in Display section. The procedure requires a separate license.
- MVA methods are added to Analysis section.

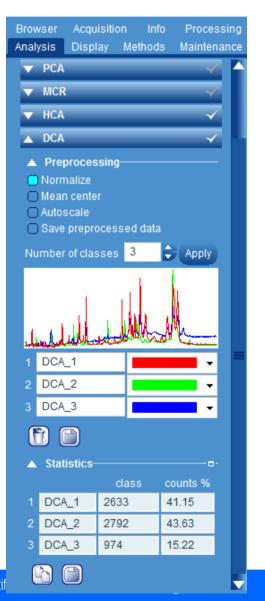





- Select a map (e.g. Training Map)
 - Select Spectrum Array window
- From Analysis section, expand PCA
 - Expand Preprocessing, and select Mean center
 - Set Components to 3
 - Click Apply

- Select a map (e.g. Training Map)
 - Select Spectrum Array window
- From Analysis section, expand MCR
 - Expand Preprocessing, and select
 Normalize
 - Set Components to 3
 - Click Apply





Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

- Select a map (e.g. Training Map)
 - Select Spectrum Array window
- From Analysis section, expand DCA
 - Expand Preprocessing, and select Normalize
 - Set Components to 3
 - Click Apply

